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Quantum trajectory is a sequence of random states (ρn)n modelling a
quantum system on which an indirect measurement is repeatedly performed

ρ0 ⊗ σ
↓ unitary interaction

U(ρ0 ⊗ σ)U∗

↓ measure the probe with a PVM (πi )i

(Isys ⊗ πi )U(ρ0 ⊗ σ)U∗(Isys ⊗ πi )
↓ trace out the probe

With probability Prob(i) = tr
[
(Isys ⊗ πi )U(ρ0 ⊗ σ)U∗

]

= tr(viρ0v
∗
i )

the state of the system becomes

ρ1 = trprobe

[
(Isys ⊗ πi )U(ρ0 ⊗ σ)U∗(Isys ⊗ πi )

Prob(i)

]

=
viρ0v

∗
i

tr(viρ0v∗i )

↓ take a new probe in state σ and repeat

quantum trajectory (ρn)n
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The goal is to extract information from a quantum system without
any direct interaction of the system with a macroscopic apparatus.

Experimental implementation: photons trapped in a cavity and
probed with atoms. Allows to measure the number of photons
without destroying them.

Serge Haroche received for this experiment the 2012 Nobel prize
in physics along with David Wineland (for a similar experiment)

Picture source: E.Hinds, R.Blatt, Manipulating individual quantum systems. Nature 492, 55 (2012)



Quantum trajectories

Quantum trajectory: sequence (ρn)n of random quantum states defined as

ρn+1 =
viρnv

∗
i

tr(viρnv∗i )
with prob. tr(viρnv

∗
i )

where v1, . . . , v` ∈ Cd×d satisfy the stochasticity condition
∑`

i=1 v
∗
i vi = I.

It is a Markov chain in the set of states S.

What is its long-time behaviour? Invariant measures?

Everything holds for a measure µ on Md(C) satisfying some technical assumptions

and the evolution

ρn+1 =
vρnv

∗

tr(vρnv∗)
with prob. tr(vρnv

∗) dµ(v)



Purification (and dark subspaces)

• Quantum trajectories preserve pure states:

xn+1 =
vixn
‖vixn‖

with probability ‖vixn‖2 = tr(vi |xn〉〈xn| v∗i )

• Purity may stay constant along the trajectory:
if each Kraus operator is proportional to a unitary (vi = λiui ), then

ρn+1 =
viρnv

∗
i

tr(viρnv
∗
i ) =

λiuiρnλiu
∗
i

tr(λiuiρnλiu
∗
i )

= uiρnu
∗
i .

So ρn+1 and ρn have the same eigenvalues ⇒ purity stays the same

• Conditions for purification?

Theorem (Kümmerer & Maassen 2006)

Trajectories purify, ie. dist(ρn,Pure)
n→∞−−−→0, iff there are no dark subspaces



Purification

Theorem (Benoist, Fraas, Pautrat, Pellegrini 2019)

If we assume that:

1 trajectories purify (i.e. no dark subspaces)

2 Φ(ρ) =
∑

i viρv
∗
i is irreducible (i.e. it has a unique full-rank fixed point)

then there exists a unique invariant probability measure for (ρn)n

Without irreducibility:

classification of invariant measures, based on decomposing Φ into irreducible parts

Proof: Construction of a sequence of states (ρ̂n)n that depend only on the
outcomes (and not on the initial state) and satisfy lim

n→∞
d(ρn, ρ̂n) = 0

New aim: Classify the invariant measures for (ρn)n without purification
i.e. allowing dark subspaces (but keeping irreducibility)



Dark subspaces

A subspace D ⊂ Cd of dimension at least 2 is called a dark subspace if
∀ n ∈ N ∀ (i1, . . . , in) ∃ λ(i1,...,in) ≥ 0 ∃ U(i1,...,in) ∈ U(d) :

vin · · · vi1
∣∣
D

= λ(i1,...,in)U(i1,...,in)

∣∣
D

Equivalently, with πD denoting the orthogonal projection on D:

πDv
∗
i1 · · · v

∗
invin · · · vi1πD = λ2

(i1,...,in)πD

• 1-dim subspaces satisfy this trivially (but are not considered dark).

• in dim d = 2: C2 is dark iff all vi ’s are proportional to unitaries.

• in general:

Hard to describe dark subspace for given matrices v1, . . . , v`

Dark subspaces can intersect non-trivially

There may be uncountably many of them (Ex. in Kümmerer & Maassen ’06)
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Example in dim d = 4

Let u1, u2, u3, u4 be 2× 2 unitary matrices and consider the Kraus operators

v1 =

 0
√

1
3u1√

1
4u2 0

 and v2 =

 0
√

2
3u3√

3
4u4 0


There are two 2-dim dark subspaces:

{[z1, z2, 0, 0]T : z1, z2 ∈ C} and {[0, 0, z3, z4]T : z3, z4 ∈ C}



Example of intersecting dark spaces

v1 =
1√
2

cos θ sin θ cos θ
sin θ − cos θ sin θ

0 0 0

 v2 =
1√
2

 0 0 0
cosφ − sinφ − cosφ
sinφ cosφ − sinφ


Again two dark subspaces: {[x , y , 0]T : x , y ∈ C} and {[0, y , z ]T : y , z ∈ C}



Strategy

Aim: Classify invariant measures for (ρn)n without purification i.e.
allowing dark subspaces (but keeping irreducibility)

Let’s denote by Dm the set of maximal dark subspaces, i.e. those with the
largest dimension, which we denote by r .



Zoom out: dynamics ‘between’ dark spaces

χinv = 1
2δLeft + 1

2δRight

We can construct an invariant measure for (ρn)n as

∫
Dm

Unif(P(D)) dχinv(D)



Zoom out: dynamics ‘between’ dark spaces

Theorem (Kümmerer, Maassen 2006)
Asymptotically, quantum trajectories perform a random walk between
dark subspaces of the same dimension.

For D ∈ Dm, with probability λ2
i = tr(vi

πD
tr(πD)v

∗
i ) we have

D 7−→ viD = λiUiD

In terms of projectors:

πD 7−→
viπDv

∗
i

tr(vi
πD

tr(πD)v
∗
i )

= πviD

Theorem (Benoist, Pellegrini, S.)
Φ is irreducible ⇒ there exists a unique invariant prob. meas. for (Dn)n.

Let’s denote this measure by χinv.



Zoom in: the ‘inner’ dynamics. Reference space Cr

On PCr we consider unitary operators uvi ,D ∝ J
−1
viD

viJD

induced by vi ’s and a family of isometries {JD : Cr → D}D∈Dm

G := cl〈{uvi ,D : i = 1 . . . `,D ∈ suppχinv}〉 carries the Haar measure.

Unif[x ]G is invariant under the dynamics on PCr for any x .

Now take χinv on Dm and consider χinv ⊗Unif[x ]G on Dm × PCr .
Send it to PCd via Ψ: (D, z) 7→ JDz .

We get an invariant measure νx = Ψ∗
(
χinv ⊗Unif[x ]G

)
on PCd

Take JLeft, JRight as can. embeddings

J−1
Rightv1JLeft∝uv1,DLeft

= u2 : C2 → C2

G = cl 〈{u1, u2, u3, u4}〉

Unif[x ]G =
∑

xi∈[x]G
1
6δxi

νx =

χinv(DLeft)

1
2

∑
yi∈JLeft[x]G

1
6δyi +

χinv(DRight)

1
2

∑
yi∈JRight[x]G

1
6δyi
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Zoom in: the ‘inner’ dynamics. Reference space Cr

On PCr we consider (special) unitary operators uvi ,D ∝ J
−1
viD

viJD

induced by vi ’s and a family of isometries {JD : Cr → D}D∈Dm
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We get an invariant measure νx = Ψ∗
(
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)
on PCd

Theorem: (νx)x∈PCr are the only ergodic measures iff (JD)D is optimal

Definition: (JD)D is called optimal if G is minimal (in terms of subgroups)

Proof is much easier if we assume that the dark subspaces intersect trivially
(because Ψ: Dm × PCr → PCd is then invertible).

Without this assumption, we need an extra tool: Raugi’s theorem



Main tool & main result

Let Π be the Markov kernel corresponding to (pure) quantum trajectories:

Πf (x) =
∑

i
f
(

vix
‖vix‖

)
‖vix‖2

Raugi’s theorem (1992). If Π is equicontinuous, the map:

{ergodic measures} 3 µ 7→ suppµ ∈ {minimal sets}

is a bijection.

Theorem: (νx)x∈PCr are the only ergodic measures iff (JD)D is optimal

Steps of the proof:

1 Π is indeed equicontinuous (Benoist, Hautecoeur, Pellegrini ’24)

2 If (JD)D is optimal, then (supp νx)x∈PCr are the only minimal sets

3 So (νx)x∈PCr are the only ergodic measures (Raugi ’92)



Summary

Theorem (T. Benoist, C. Pellegrini, AS)

If Φ(ρ) =
∑

i viρv
∗
i is irreducible:

All Π-ergodic measures are exactly the family (νx)x∈PCr constructed
w.r.t. an optimal family.

There is a unique Π-invariant measure iff an optimal family generates
SU(r) or the symplectic group Sp(r/2) for the case r ∈ 2N.
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