Invariant Measures for Quantum Trajectories and Dark Subspaces

Anna Szczepanek
Institut de Mathématiques de Toulouse

Joint work with Tristan Benoist and Clément Pellegrini

ESQuisses Summer School II
Porquerolles, June 2024
Quantum trajectory is a sequence of random states $(\rho_n)_n$ modelling a quantum system on which an indirect measurement is repeatedly performed.

\[
\rho_0 \otimes \sigma \\
\downarrow \text{unitary interaction} \\
U(\rho_0 \otimes \sigma)U^* \\
\downarrow \text{measure the probe with a PVM } (\pi_i)_i \\
(\mathbb{I}_{\text{sys}} \otimes \pi_i)U(\rho_0 \otimes \sigma)U^*(\mathbb{I}_{\text{sys}} \otimes \pi_i) \\
\downarrow \text{trace out the probe}
\]

With probability $\text{Prob}(i) = \text{tr} \left[(\mathbb{I}_{\text{sys}} \otimes \pi_i)U(\rho_0 \otimes \sigma)U^* \right]$ the state of the system becomes

\[
\rho_1 = \text{tr}_{\text{probe}} \left[\frac{(\mathbb{I}_{\text{sys}} \otimes \pi_i)U(\rho_0 \otimes \sigma)U^*(\mathbb{I}_{\text{sys}} \otimes \pi_i)}{\text{Prob}(i)} \right]
\]

\[
\downarrow \text{take a new probe in state } \sigma \text{ and repeat}
\]

quantum trajectory $(\rho_n)_n$
Quantum trajectory is a sequence of random states \((\rho_n)_n\) modelling a quantum system on which an indirect measurement is repeatedly performed.

\[
\rho_0 \otimes \sigma \\
\downarrow \text{unitary interaction} \\
U(\rho_0 \otimes \sigma)U^* \\
\downarrow \text{measure the probe with a PVM } (\pi_i)_i \\
(\mathbb{I}_{sys} \otimes \pi_i)U(\rho_0 \otimes \sigma)U^*(\mathbb{I}_{sys} \otimes \pi_i) \\
\downarrow \text{trace out the probe}
\]

With probability \(\text{Prob}(i) = \text{tr} \left[(\mathbb{I}_{sys} \otimes \pi_i)U(\rho_0 \otimes \sigma)U^*\right] = \text{tr}(v_i \rho_0 v_i^*)\)

the state of the system becomes

\[
\rho_1 = \text{tr}_{\text{probe}} \left[\frac{(\mathbb{I}_{sys} \otimes \pi_i)U(\rho_0 \otimes \sigma)U^*(\mathbb{I}_{sys} \otimes \pi_i)}{\text{Prob}(i)}\right] = \frac{v_i \rho_0 v_i^*}{\text{tr}(v_i \rho_0 v_i^*)}
\]

\[
\downarrow \text{take a new probe in state } \sigma \text{ and repeat}
\]

quantum trajectory \((\rho_n)_n\)
The goal is to **extract information** from a quantum system without any direct interaction of the system with a macroscopic apparatus.

Experimental implementation: photons trapped in a cavity and probed with atoms. Allows to measure the number of photons without destroying them.

Serge Haroche received for this experiment the 2012 Nobel prize in physics along with **David Wineland** (for a similar experiment)

Quantum trajectories

Quantum trajectory: sequence \((\rho_n)_n\) of random quantum states defined as

\[
\rho_{n+1} = \frac{v_i \rho_n v_i^*}{\text{tr}(v_i \rho_n v_i^*)} \quad \text{with prob.} \quad \text{tr}(v_i \rho_n v_i^*)
\]

where \(v_1, \ldots, v_\ell \in \mathbb{C}^{d \times d}\) satisfy the stochasticity condition \(\sum_{i=1}^\ell v_i^* v_i = \mathbb{I}\).

It is a **Markov chain** in the set of states \(S\).

What is its long-time behaviour? Invariant measures?

Everything holds for a measure \(\mu\) on \(M_d(\mathbb{C})\) satisfying some technical assumptions and the evolution

\[
\rho_{n+1} = \frac{v \rho_n v^*}{\text{tr}(v \rho_n v^*)} \quad \text{with prob.} \quad \text{tr}(v \rho_n v^*) \, d\mu(v)
\]
Purification (and dark subspaces)

- Quantum trajectories preserve pure states:
 \[x_{n+1} = \frac{v_i x_n}{\|v_i x_n\|} \text{ with probability } \|v_i x_n\|^2 = \text{tr}(v_i |x_n\rangle\langle x_n| v_i^*) \]

- **Purity may stay constant** along the trajectory:
 if each Kraus operator is proportional to a unitary \((v_i = \lambda_i u_i)\), then
 \[
 \rho_{n+1} = \frac{v_i \rho_n v_i^*}{\text{tr}(v_i \rho_n v_i^*)} = \frac{\lambda_i u_i \rho_n \lambda_i u_i^*}{\text{tr}(\lambda_i u_i \rho_n \lambda_i u_i^*)} = u_i \rho_n u_i^*.
 \]
 So \(\rho_{n+1}\) and \(\rho_n\) have the same eigenvalues \(\Rightarrow\) purity stays the same

- Conditions for purification?

Theorem (Kümmerer & Maassen 2006)

Trajectories purify, i.e. \(\text{dist}(\rho_n, \text{Pure}) \xrightarrow{n \to \infty} 0\), iff there are no **dark subspaces**
Theorem (Benoist, Fraas, Pautrat, Pellegrini 2019)

If we assume that:

1. trajectories purify (i.e. no dark subspaces)
2. $\Phi(\rho) = \sum_i v_i \rho v_i^*$ is irreducible (i.e. it has a unique full-rank fixed point)

then there exists a unique invariant probability measure for $(\rho_n)_n$

Without irreducibility:

classification of invariant measures, based on decomposing Φ into irreducible parts

Proof: Construction of a sequence of states $(\hat{\rho}_n)_n$ that depend only on the outcomes (and not on the initial state) and satisfy $\lim_{n \to \infty} d(\rho_n, \hat{\rho}_n) = 0$

New aim: Classify the invariant measures for $(\rho_n)_n$ without purification
i.e. allowing dark subspaces (but keeping irreducibility)
Dark subspaces

A subspace $D \subset \mathbb{C}^d$ of dimension at least 2 is called a **dark subspace** if

$$\forall n \in \mathbb{N} \quad \forall (i_1, \ldots, i_n) \quad \exists \lambda(i_1,\ldots,i_n) \geq 0 \quad \exists U(i_1,\ldots,i_n) \in \mathcal{U}(d) :$$

$$v_{i_n} \cdots v_{i_1} \big|_D = \lambda(i_1,\ldots,i_n) U(i_1,\ldots,i_n) \big|_D$$

Equivalently, with π_D denoting the orthogonal projection on D:

$$\pi_D v_{i_1}^* \cdots v_{i_n}^* v_{i_n} \cdots v_{i_1} \pi_D = \lambda^2(i_1,\ldots,i_n) \pi_D$$

• in dim $d = 2$: C_2 is dark iff all v's are proportional to unitaries.
• in general: Hard to describe dark subspace for given matrices v_1, \ldots, v_ℓ. Dark subspaces can intersect non-trivially. There may be uncountably many of them (Ex. in Kümmerer & Maassen '06).
Dark subspaces

A subspace $D \subset \mathbb{C}^d$ of dimension at least 2 is called a **dark subspace** if

\[
\forall n \in \mathbb{N} \quad \forall (i_1, \ldots, i_n) \quad \exists \lambda_{(i_1,\ldots,i_n)} \geq 0 \quad \exists U_{(i_1,\ldots,i_n)} \in \mathcal{U}(d) : \\
v^*_{i_n} \cdots v^*_{i_1} \big|_D = \lambda_{(i_1,\ldots,i_n)} U_{(i_1,\ldots,i_n)} \big|_D
\]

Equivalently, with π_D denoting the orthogonal projection on D:

\[
\pi_D v^*_{i_n} \cdots v^*_{i_1} v_{i_n} \cdots v_{i_1} \pi_D = \lambda^2_{(i_1,\ldots,i_n)} \pi_D
\]

- 1-dim subspaces satisfy this trivially (but are not considered dark).
- in dim $d = 2$: \mathbb{C}^2 is dark iff all v_i's are proportional to unitaries.
- in general:
 - Hard to describe dark subspace for given matrices v_1, \ldots, v_ℓ
 - Dark subspaces can intersect non-trivially
 - There may be uncountably many of them (Ex. in Kümmerer & Maassen '06)
Example in dim $d = 4$

Let u_1, u_2, u_3, u_4 be 2×2 unitary matrices and consider the Kraus operators

\[
v_1 = \begin{bmatrix} 0 & \sqrt{\frac{1}{3}} u_1 \\ \sqrt{\frac{1}{4}} u_2 & 0 \end{bmatrix} \quad \text{and} \quad v_2 = \begin{bmatrix} 0 & \sqrt{\frac{2}{3}} u_3 \\ \sqrt{\frac{3}{4}} u_4 & 0 \end{bmatrix}
\]

There are two 2-dim dark subspaces:

\[
\{ [z_1, z_2, 0, 0]^T : z_1, z_2 \in \mathbb{C} \} \quad \text{and} \quad \{ [0, 0, z_3, z_4]^T : z_3, z_4 \in \mathbb{C} \}
\]
Example of intersecting dark spaces

\[
v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} \cos \theta & \sin \theta & \cos \theta \\ \sin \theta & -\cos \theta & \sin \theta \\ 0 & 0 & 0 \end{bmatrix} \quad \quad v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 0 & 0 \\ \cos \phi & -\sin \phi & -\cos \phi \\ \sin \phi & \cos \phi & -\sin \phi \end{bmatrix}
\]

Again two dark subspaces: \{ \begin{bmatrix} x, y, 0 \end{bmatrix}^T : x, y \in \mathbb{C} \} and \{ \begin{bmatrix} 0, y, z \end{bmatrix}^T : y, z \in \mathbb{C} \}
Strategy

Aim: Classify invariant measures for \((\rho_n)_n\) **without purification** i.e. allowing dark subspaces (but keeping irreducibility)

Let’s denote by \(D_m\) the set of **maximal dark subspaces**, i.e. those with the largest dimension, which we denote by \(r\).
We can construct an invariant measure for \((\rho_n)_n\) as
\[
\int_{D_m} \text{Unif}(P(D)) \, d\chi_{\text{inv}}(D)
\]
Theorem (Kümmerer, Maassen 2006)
Asymptotically, quantum trajectories perform a random walk between dark subspaces of the same dimension.

For $D \in D_m$, with probability $\lambda_i^2 = \text{tr}(v_i \frac{\pi_D}{\text{tr}(\pi_D)} v_i^*)$ we have

$$D \mapsto v_i D = \lambda_i U_i D$$

In terms of projectors:

$$\pi_D \mapsto \frac{v_i \pi_D v_i^*}{\text{tr}(v_i \frac{\pi_D}{\text{tr}(\pi_D)} v_i^*)} = \pi v_i D$$

Theorem (Benoist, Pellegrini, S.)
Φ is irreducible \Rightarrow there exists a unique invariant prob. meas. for $(D_n)_n$.
Let’s denote this measure by χ_{inv}.
On \(\mathbb{P} \mathbb{C}^r \) we consider unitary operators \(u_{v_i,D} \propto J_{v_i,D}^{-1} v_i J_D \) induced by \(v_i \)'s and a family of isometries \(\{ J_D : \mathbb{C}^r \to D \} \) \(D \in \mathcal{D}_m \).

\(G := \text{cl} \langle \{ u_{v_i,D} : i = 1 \ldots \ell, D \in \text{supp} \chi_{\text{inv}} \} \rangle \) carries the Haar measure. \(\text{Unif}[x]_G \) is invariant under the dynamics on \(\mathbb{P} \mathbb{C}^r \) for any \(x \).

Take \(J_{\text{Left}}, J_{\text{Right}} \) as can. embeddings

\[
J_{\text{Right}}^{-1} v_1 J_{\text{Left}} \propto u_{v_1,D_{\text{Left}}} = u_2 : \mathbb{C}^2 \to \mathbb{C}^2
\]

\(G = \text{cl} \langle \{ u_1, u_2, u_3, u_4 \} \rangle \)
Zoom in: the ‘inner’ dynamics. Reference space \mathbb{C}^r

- On $\mathbb{P}\mathbb{C}^r$ we consider **unitary operators** $u_{v_i,D} \propto J_{v_iD}^{-1} v_i J_D$ induced by v_i’s and a family of isometries $\{J_D : \mathbb{C}^r \to D\}_{D \in \mathcal{D}_m}$

- $G := \text{cl} \langle \{u_{v_i,D} : i = 1 \ldots \ell, D \in \text{supp} \chi_{\text{inv}}\} \rangle$ carries the Haar measure. $\text{Unif}[x]_G$ is invariant under the dynamics on $\mathbb{P}\mathbb{C}^r$ for any x.

Now take χ_{inv} on \mathcal{D}_m and consider $\chi_{\text{inv}} \otimes \text{Unif}[x]_G$ on $\mathcal{D}_m \times \mathbb{P}\mathbb{C}^r$.
Send it to $\mathbb{P}\mathbb{C}^d$ via $\Psi : (D, z) \mapsto J_D z$.

We get an **invariant** measure $\nu_x = \Psi_* (\chi_{\text{inv}} \otimes \text{Unif}[x]_G)$ on $\mathbb{P}\mathbb{C}^d$

Take $J_{\text{Left}}, J_{\text{Right}}$ as can. embeddings

$J_{\text{Right}}^{-1} v_1 J_{\text{Left}} \propto u_{v_1,D_{\text{Left}}} = u_2 : \mathbb{C}^2 \to \mathbb{C}^2$

$G = \text{cl} \langle \{u_1, u_2, u_3, u_4\} \rangle$
On \(\mathbb{P}\mathbb{C}^r \) we consider unitary operators \(u_{v_i,D} \propto J_{v_i,D}^{-1} v_i J_D \) induced by \(v_i \)'s and a family of isometries \(\{J_D : \mathbb{C}^r \to D\} \) for any \(D \in \mathcal{D}_m \).

\(G := \text{cl}\langle\{u_{v_i,D} : i = 1 \ldots \ell, D \in \text{supp} \chi_{\text{inv}}\}\rangle \) carries the Haar measure. \(\text{Unif}[x]_G \) is invariant under the dynamics on \(\mathbb{P}\mathbb{C}^r \) for any \(x \).

Now take \(\chi_{\text{inv}} \) on \(\mathcal{D}_m \) and consider \(\chi_{\text{inv}} \otimes \text{Unif}[x]_G \) on \(\mathcal{D}_m \times \mathbb{P}\mathbb{C}^r \). Send it to \(\mathbb{P}\mathbb{C}^d \) via \(\Psi : (D, z) \mapsto J_D z \).

We get an invariant measure \(\nu_x = \Psi_* (\chi_{\text{inv}} \otimes \text{Unif}[x]_G) \) on \(\mathbb{P}\mathbb{C}^d \).

Take \(J_{\text{Left}} \), \(J_{\text{Right}} \) as can. embeddings

\[
J_{\text{Right}}^{-1} v_1 J_{\text{Left}} \propto u_{v_1,D_{\text{Left}}} = u_2 : \mathbb{C}^2 \to \mathbb{C}^2
\]

\(G = \text{cl} \langle\{u_1, u_2, u_3, u_4\}\rangle \)

\[
\text{Unif}[x]_G = \sum_{x_i \in [x]_G} \frac{1}{6} \delta_{x_i}
\]
On $\mathbb{P}\mathbb{C}^r$ we consider **unitary operators** $u_{v_i,D} \propto J_{v_iD}^{-1} v_i J_D$
induced by v_i’s and a family of isometries $\{J_D: \mathbb{C}^r \to D\}_{D \in \mathcal{D}_m}$

$G := \text{cl}\langle\{u_{v_i,D}: i = 1 \ldots \ell, D \in \text{supp } \chi_{\text{inv}}\}\rangle$ carries the Haar measure. $\text{Unif}[x]_G$ is invariant under the dynamics on $\mathbb{P}\mathbb{C}^r$ for any x.

Now take χ_{inv} on \mathcal{D}_m and consider $\chi_{\text{inv}} \otimes \text{Unif}[x]_G$ on $\mathcal{D}_m \times \mathbb{P}\mathbb{C}^r$.
Send it to $\mathbb{P}\mathbb{C}^d$ via $\Psi: (D, z) \mapsto J_D z$.

We get an **invariant** measure $\nu_x = \Psi_*(\chi_{\text{inv}} \otimes \text{Unif}[x]_G)$ on $\mathbb{P}\mathbb{C}^d$

Take $J_{\text{Left}}, J_{\text{Right}}$ as can. embeddings

$J_{\text{Right}}^{-1} v_1 J_{\text{Left}} \propto u_{v_1,D_{\text{Left}}} = u_2: \mathbb{C}^2 \to \mathbb{C}^2$

$G = \text{cl} \langle\{u_1, u_2, u_3, u_4\}\rangle$

$\text{Unif}[x]_G = \sum_{x_i \in [x]_G} \frac{1}{6} \delta_{x_i}$

$\chi_{\text{inv}}(D_{\text{Left}}) \quad \chi_{\text{inv}}(D_{\text{Right}})$

$\nu_x = \frac{1}{2} \sum_{y_i \in J_{\text{Left}}[x]_G} \frac{1}{6} \delta_{y_i} + \frac{1}{2} \sum_{y_i \in J_{\text{Right}}[x]_G} \frac{1}{6} \delta_{y_i}$
On $\mathbb{P}\mathbb{C}^r$ we consider (special) **unitary operators** $u_{v_i,D} \propto J_{v_iD}^{-1}v_iJ_D$ induced by v_i's and a family of isometries $\{J_D: \mathbb{C}^r \rightarrow D\}_{D \in \mathcal{D}_m}$

$G := \text{cl}\langle\{u_{v_i,D}: i = 1 \ldots \ell, D \in \text{supp} \chi_{\text{inv}}\}\rangle$ carries the Haar measure. $\text{Unif}[x]_G$ is invariant under the dynamics on $\mathbb{P}\mathbb{C}^r$ for any x.

Now take χ_{inv} on \mathcal{D}_m and consider $\chi_{\text{inv}} \otimes \text{Unif}[x]_G$ on $\mathcal{D}_m \times \mathbb{P}\mathbb{C}^r$.

Send it to $\mathbb{P}\mathbb{C}^d$ via $\Psi: (D, z) \mapsto J_Dz$.

We get an **invariant** measure $\nu_x = \Psi_*(\chi_{\text{inv}} \otimes \text{Unif}[x]_G)$ on $\mathbb{P}\mathbb{C}^d$

Theorem: $(\nu_x)_{x \in \mathbb{P}\mathbb{C}^r}$ are the **only ergodic measures** iff $(J_D)_D$ is **optimal**

Definition: $(J_D)_D$ is called **optimal** if G is minimal (in terms of subgroups)

Proof is much easier if we assume that the dark subspaces intersect trivially (because $\Psi: \mathcal{D}_m \times \mathbb{P}\mathbb{C}^r \rightarrow \mathbb{P}\mathbb{C}^d$ is then invertible).

Without this assumption, we need an extra tool: Raugi’s theorem
Main tool & main result

Let Π be the Markov kernel corresponding to (pure) quantum trajectories:

$$\Pi f(x) = \sum_i f\left(\frac{v_i x}{\|v_i x\|}\right) \|v_i x\|^2$$

Raugi's theorem (1992). If Π is equicontinuous, the map:

$$\{\text{ergodic measures}\} \ni \mu \mapsto \text{supp } \mu \in \{\text{minimal sets}\}$$

is a bijection.

Theorem: $(\nu_x)_{x \in \mathbb{P}\mathcal{C}^r}$ are the only ergodic measures iff $(J_D)_D$ is optimal

Steps of the proof:

1. Π is indeed equicontinuous (Benoist, Hautecoeur, Pellegrini '24)
2. If $(J_D)_D$ is optimal, then $(\text{supp } \nu_x)_{x \in \mathbb{P}\mathcal{C}^r}$ are the only minimal sets
3. So $(\nu_x)_{x \in \mathbb{P}\mathcal{C}^r}$ are the only ergodic measures (Raugi '92)
Theorem (T. Benoist, C. Pellegrini, AS)

If $\Phi(\rho) = \sum_i \nu_i \rho \nu_i^*$ is irreducible:

- All Π-ergodic measures are exactly the family $(\nu_x)_{x \in P\mathbb{C}^r}$ constructed w.r.t. an optimal family.
- There is a **unique Π-invariant measure** iff an optimal family generates $SU(r)$ or the symplectic group $Sp(r/2)$ for the case $r \in 2\mathbb{N}$.

Theorem (T. Benoist, C. Pellegrini, AS)
If $\Phi(\rho) = \sum_i v_i \rho v_i^*$ is irreducible:

- All Π-ergodic measures are exactly the family $(\nu_x)_{x \in \mathbb{P}\mathbb{C}^r}$ constructed w.r.t. an optimal family.

- There is a unique Π-invariant measure iff an optimal family generates $SU(r)$ or the symplectic group $Sp(r/2)$ for the case $r \in 2\mathbb{N}$.

