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Introduction



Convention and notation

Pure quantum state [¢) in finite dimensional Hilbert space # = CP.
Mixed states are described by p € Mp(C) such that p >0 and Trp =1,
p=[¥){¥| if pis pure.
Bipartite pure state |pag) on Ha ® Hp:

[vag)(Yas| = pa = Tra(|vas)(Vasl),
where Trg(+) :=ida ® Tr(+).

Rényi entropy is defined as:

Snlp) = 1 :

log(Tr(p"))-

—n

@ Von Neuman entropy is defined as:

5(p) := —Tr(plogp).



Random Tensor Network

o

Figure 1: Generic (random) Tensor network |¢¢) associated to G.

The main goal of this work:
[ve) — pa = Tre|ve) (V6| — Dlim ES,(pa) ~ ¢ log D + “corrections”.
—00

where § is the minimal cuts separating A from B.
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Random Tensor Network

Definition

Let G = (V, E) a connected undirected finite graph with edges £, and half
edges £5. Formally the set of edges and half edges are defined as follows
Ep = {ecy |6y =(x,y): x,y € V},
Ey:={ex=(x,"): x € V},
E := E, U E3.




Random Tensor Network

Definition

From a given graph G we will define Hilbert space associated with each part of
the graph.
o For each half-edge e, € E£5:

& € Esg = He, == cPb.

@ For each edges e, , € Ep:

D

1
exy €EEp—>He =CPoCP and Q) :=— Iy 0y) .
y L / ﬁ;' y>

@ For each vertex x € V:
xeV—-H, = ® He and x €V =g,
E>e—x
where |gy) are random quantum state sampled from an i.i.d Gaussian
distribution.




Random Tensor Network

Definition

A random tensor network |¢¢) is defined as a projection of the vertex state over
all the maximally entangled states |Q.) for each e, , in E, where:

e = < R Q. ®gx> e (CP)*%!

eckEy xeV

Figure 2: A tensor network depicting a tensor from (CP)®° obtained by contracting
17 tensors.



Let A C Ey be a sub-boundary region of the graph G. We shall denote by
:= Ey \ A the complementary region of A.

The goal of this part is to compute the moments of pa:

PA — E Tr(p/’;)a

where pa = Trg |1)6){(t¢| is the quantum state associated to the region
A by tacking partial trace over the Hilbert space Hp.

Figure 3: The boundary terms are partitioned into two subsets B LI



Proposition

For any A C Ey, we have:
vneN, E[Tr(pR)l= Y. Drlfl-H#@
a:(ax)ES,‘,v‘

where H(G")(a) is given given by:

HO(@) = Y i lawl+ Y lide ol + Y Jonlay).

(X,')E/\ (X")EB (X7}/)EE/J

Y« := (n---1) is the total cycle in S, and |a; 1, | is the Cayley distance.

For n = 2, the permutation group is only S,. Each permutation a, € {idy, Fx}.
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Maximal flow

Definition

From the original graph G we construct a network Gy .

@ The network Gug is constructed by adding two extra vertices {id,~} and by
connecting each of the boundary region A to v and boundary region B to id.

Definition

@ A flow in the network Gy consist of all the possible paths that starts from id
(source) and ends in 7 (sink).

® A maximal flow is the maximal number of edge-disjoint paths from id to
needed to remove such that the source (id) and the sink () becomes
completely disconnected, formally:

maxflow(Gag) := max{|’P(GA‘B)} . paths in P(Ggy|g) are edge-disjoint},

where

P(Gag) = {mi: mi:id—=~},




Maximal flow

Figure 4: The region A and the region and its complementary region B where the
boundary BU A =: Ej.

Figure 5: The maximum flow of the network Ggs is 4, the four augmenting paths
achieving this value are colored.



Maximal Flow
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Figure 7: Residual network. Figure 8: Ordered graph GX\B'



Maximal flow

The maximal flow approach allows us to estimate the leading terms of
E[Tr(pi)] as D — oc.

For all n > 1, we have

mmy H(GA)‘B( ) = (n — 1) maxflow(Gajg) = (n — 1) maxflow(Gg ).

a€ES,

[14, 4]
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Figure 9: Ordered graph Gj 5.



Minimal cuts

Menger's Theorem asserts that the maximal flow in an oriented graph G is
equal to the minimal number of edges to (remove) cut in order to make the

source and the sink completely separated.

Let G oriented graph:
maxflow(G) = dg,

where ¢ is the minimal cut.

XA

0
T
]

—
I
]
1
I

Figure 10: Maximal flow is 4 in Figure 11: Minimal cut d¢, , = 4.
the network Gyz. In blue 4 cuts achieving 6GA|B'
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Series Parallel network

Definition
Let H; and H, two directed graph with there respective source s; and sink t; for
i €{1,2}. A series-parallel network is a directed graph G = (V, E) containing
two distinct vertices s # t € V, called the source and the sink that can be
obtained recursively from the trivial network G, = ({s, t},{{s,t}}) using the
following two operations:
@ Series concatenation: G = Hy |s| H is obtained by identifying the sink of H;
with the source of Hs, i.e 11 = 5.
o Parallel concatenation: G = H; |p| H, obtained by identifying the source and
the sink of H; and Hs, i.e. 51 — 5 and ; — 1.




Graph and free probability

Definition

To a series-parallel graph G we associate a probability measure /¢, defined
recursively as follows.

@ To the trivial graph G, = ({s, t},{{s, t}}), we associate the Dirac mass at 1:
WGy = 01.
@ Series concatenation, G = Hy |s| H> we associate the measure:
pe = pry XX pp,.
o Parallel concatenation, G = H; |p| H, we associate the measure:
HG = [H, X [H,.

dr .= %\/41‘*1 — 1dt is the Marchenko-Pastur distribution and X is the free
convolution product.




Moment convergence
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Figure 12: The obtained ordered graph GA?‘B is series parallel.

Let A C Ey, assume the obtained ordered graph Gj‘ g Is series-parallel. The

moment at large bond dimension of pa are given by:

oy ._ 1 F(G8) )"
mia = pra B (07 ea) ) | 5o mocr

where F(Gg 5) = maxflow(Gg ) and Mn,Gg , are moments of a graph

dependent measure e -
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Figure 13: The ordered series-parallel graph G35 factories as G35z = Gi[s] Gz [s] G3.

The associated measure

16y, = 16 MMNXpe, XMX pe, = pe, X M2



Figure 14: Graph G; = G4 |p| Gs factorizes to parallel composition of G4 and Gs. The
associated measure g, = pG, X [Gs-

G

Figure 15: G, = (Gs |p| G7) [s| Gs

s Figure 16: G5 =

pie, = (16, X pe,) BN K pg, and Gg|3|G10|§|(G11|£|G12)|§|G13
fics = pic, = I, while g, = 61. where g, = N~ x (|-||2|2 5 I'I)



Figure 17: The series-parallel ordered graph Gg 5.

In the example considered here, we have:

Jim ED~*Tr [(D‘lpA)"} = M Ge :/x"du%. (1)

AlB

where
P {[nm X (M2 x n)} x [(M x M) & n]} X =2,



Main theorem

Let boundary region A C E5 in G, and let p, the associated reduced state.
Assuming the obtained ordered graph Gj\"B is a series-parallel one. Then the
averaged Rényi and von Neumann entropy as D — oo are given by:

o 1 )
F(GAIB)IogD —ES,(pa) m p— log (/t d“%) :

F(Gle)IogD —ES(pa) —— /t log tdpuge .
D—oco AlB

where F(G3 ) := maxflow(G3 g) -




Conclusion



Conclusion

From a general random tensor network |¢¢). Fix A C Ey and
pa = Trg|ve)(we| the associated quantum state.

@ The moments are given by:

ETr(p3)~ >, D@,
a:((xX)ES,l,v‘

@ The moment mELDA) converges to a graph dependent measure fig  if the

obtained ordered graph Gj\"B is series-parallel:
p._ 1 F(G38) 5, )"

mix = e (07 ) ) | 5o s,

@ The correction terms of the Rényi and Von Neumann entanglement entropy
(as D — o) are graph dependent (if Gag is series-parallel) given by:

o 1 @
ES,(pa) ~ F(GA|B) log D — n—1 log </ t dMG;lB) ’

ES(pa) ~ F(Ga)log D — / t log tdpucg -
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