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Introduction



Convention and notation

Pure quantum state |ψ⟩ in finite dimensional Hilbert space H = CD .
Mixed states are described by ρ ∈ MD(C) such that ρ ≥ 0 and Tr ρ = 1,
ρ = |ψ⟩⟨ψ| if ρ is pure.
Bipartite pure state |ψAB⟩ on HA ⊗ HB :

|ψAB⟩⟨ψAB | → ρA = TrB(|ψAB⟩⟨ψAB |),

where TrB(·) := idA ⊗ Tr(·).
Rényi entropy is defined as:

Sn(ρ) := 1
1 − n log(Tr(ρn)).

Von Neuman entropy is defined as:

S(ρ) := − Tr(ρ log ρ).



Random Tensor Network
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B

Figure 1: Generic (random) Tensor network |ψG⟩ associated to G .

The main goal of this work:

|ψG⟩ → ρA = TrB |ψG⟩⟨ψG | → lim
D→∞

ESn(ρA) ∼ δ log D + “corrections”.

where δ is the minimal cuts separating A from B.
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Random Tensor Network

Definition
Let G = (V ,E ) a connected undirected finite graph with edges Eb and half
edges E∂ . Formally the set of edges and half edges are defined as follows

Eb := {ex ,y | ex ,y = (x , y) : x , y ∈ V },
E∂ := {ex = (x , ·) : x ∈ V },
E := Eb ⊔ E∂ .

1 2

3 4

5 12

6

7 9 10 11

14

13

17

16

8

15



Random Tensor Network

Definition
From a given graph G we will define Hilbert space associated with each part of
the graph.
For each half-edge ex ∈ E∂ :

ex ∈ E∂ → Hex := CD .

For each edges ex ,y ∈ Eb:

ex ,y ∈ Eb → Hex,y := CD ⊗ CD and |Ωe⟩ := 1√
D

D∑
i=1

|ix , iy ⟩ .

For each vertex x ∈ V :

x ∈ V → Hx :=
⊗

E∋e→x
He and x ∈ V → |gx ⟩ ,

where |gx ⟩ are random quantum state sampled from an i.i.d Gaussian
distribution.



Random Tensor Network

Definition
A random tensor network |ψG⟩ is defined as a projection of the vertex state over
all the maximally entangled states |Ωe⟩ for each ex ,y in Eb where:

|ψG⟩ :=
〈 ⊗

e∈Eb

Ωe

∣∣∣ ⊗
x∈V

gx

〉
∈

(
CD)⊗|E∂ |

.
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Figure 2: A tensor network depicting a tensor from (CD)⊗10 obtained by contracting
17 tensors.



Moments

Let A ⊆ E∂ be a sub-boundary region of the graph G . We shall denote by
B := E∂ \ A the complementary region of A.

The goal of this part is to compute the moments of ρA:

ρA → ETr(ρn
A),

where ρA = TrB |ψG⟩⟨ψG | is the quantum state associated to the region
A by tacking partial trace over the Hilbert space HB .
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Figure 3: The boundary terms are partitioned into two subsets B ⊔ A.



Moments

Proposition

For any A ⊆ E∂ , we have:
∀n ∈ N, E [Tr(ρn

A)] =
∑

α=(αx )∈S|V |
n

Dn|E∂ |−H(n)
G (α)

where H(n)
G (α) is given given by:

H(n)
G (α) :=

∑
(x ,·)∈A

|γx
−1αx | +

∑
(x ,·)∈B

| idx
−1αx | +

∑
(x ,y)∈Eb

|αx
−1αy |.

γx := (n · · · 1) is the total cycle in Sn and |α−1
x αy | is the Cayley distance.

Example
For n = 2, the permutation group is only S2. Each permutation αx ∈ {idx ,Fx }.
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Maximal flow

Definition
From the original graph G we construct a network GA|B .
The network GA|B is constructed by adding two extra vertices {id, γ} and by
connecting each of the boundary region A to γ and boundary region B to id.

Definition
A flow in the network GA|B consist of all the possible paths that starts from id
(source) and ends in γ (sink).
A maximal flow is the maximal number of edge-disjoint paths from id to γ
needed to remove such that the source (id) and the sink (γ) becomes
completely disconnected, formally:

maxflow(GA|B) := max
{∣∣P(GA|B)

∣∣ : paths in P(GA|B) are edge-disjoint
}
,

where
P(GA|B) := {πi : πi : id → γ},



Maximal flow
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Figure 4: The region A and the region and its complementary region B where the
boundary B ⊔ A =: E∂ .
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Figure 5: The maximum flow of the network GA|B is 4, the four augmenting paths
achieving this value are colored.



Maximal Flow
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Figure 6: Network GA|B with coloured paths achieving the maximal flow.
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Figure 7: Residual network.
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Figure 8: Ordered graph Go
A|B .



Maximal flow

The maximal flow approach allows us to estimate the leading terms of
E [Tr(ρn

A)] as D → ∞.

Theorem
For all n ≥ 1, we have

min
α∈S|V |

n

H(n)
GA|B

(α) = (n − 1) maxflow(GA|B) = (n − 1) maxflow(Go
A|B).
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Figure 9: Ordered graph Go
A|B .



Minimal cuts

Menger’s Theorem asserts that the maximal flow in an oriented graph G is
equal to the minimal number of edges to (remove) cut in order to make the
source and the sink completely separated.

Theorem
Let G oriented graph:

maxflow(G) = δG ,

where δG is the minimal cut.
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Figure 10: Maximal flow is 4 in
the network GA|B .
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Figure 11: Minimal cut δGA|B = 4.
In blue 4 cuts achieving δGA|B .
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Series Parallel network

Definition
Let H1 and H2 two directed graph with there respective source si and sink ti for
i ∈ {1, 2}. A series-parallel network is a directed graph G = (V ,E ) containing
two distinct vertices s ̸= t ∈ V , called the source and the sink that can be
obtained recursively from the trivial network Gtriv = ({s, t}, {{s, t}}) using the
following two operations:
Series concatenation: G = H1

⊔
S H2 is obtained by identifying the sink of H1

with the source of H2, i.e t1 = s2.
Parallel concatenation: G = H1

⊔
P H2 obtained by identifying the source and

the sink of H1 and H2, i.e. s1 = s2 and t1 = t2.



Graph and free probability

Definition
To a series-parallel graph G we associate a probability measure µG , defined
recursively as follows.
To the trivial graph Gtriv = ({s, t}, {{s, t}}), we associate the Dirac mass at 1:

µGtriv := δ1.

Series concatenation, G = H1
⊔
S H2 we associate the measure:

µG := µH1 ⊠ Π ⊠ µH2 .

Parallel concatenation, G = H1
⊔
P H2 we associate the measure:

µG := µH1 × µH2 .

dΠ := 1
2π

√
4t−1 − 1 dt is the Marc̆henko-Pastur distribution and ⊠ is the free

convolution product.



Moment convergence
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Figure 12: The obtained ordered graph Go
A|B is series parallel.

Theorem

Let A ⊆ E∂ , assume the obtained ordered graph Go
A|B is series-parallel. The

moment at large bond dimension of ρA are given by:

m(D)
n,A := 1

DF (Go
A|B)E

[
Tr

((
DF (Go

A|B) ρA

)n) ]
−−−−→
D→∞

mn,Go
A|B
,

where F (Go
A|B) = maxflow(Go

A|B) and mn,Go
A|B

are moments of a graph
dependent measure µGo

A|B
.



Example

G1
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Figure 13: The ordered series-parallel graph Go
A|B factories as Go

A|B = G1
⊔
S G2

⊔
S G3.

The associated measure

µGo
A|B

= µG1 ⊠ Π ⊠ µG2 ⊠ Π ⊠ µG3 = µG1 ⊠ Π⊠2.
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Figure 14: Graph G1 = G4
⊔
P G5 factorizes to parallel composition of G4 and G5. The

associated measure µG1 = µG4 × µG5 .
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Figure 15: G4 =
(
G6

⊔
P G7

) ⊔
S G8

where
µG4 = (µG6 × µG7 ) ⊠ Π ⊠ µG8 and
µG6 = µG7 = Π, while µG8 = δ1.
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Figure 16: G5 =
G9

⊔
S G10

⊔
S

(
G11

⊔
P G12

) ⊔
S G13

where µG5 = Π⊠3 ⊠
(
Π⊠2 × Π

)
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Figure 17: The series-parallel ordered graph Go
A|B .

In the example considered here, we have:

lim
D→∞

ED−4 Tr
[
(D4ρA)n

]
= mn,Go

A|B
=

∫
xn dµGo

A|B
. (1)

where
µGo

A|B
=

{[
Π⊠3 ⊠ (Π⊠2 × Π)

]
× [(Π × Π) ⊠ Π]

}
⊠ Π⊠2.



Main theorem

Theorem
Let boundary region A ⊆ E∂ in G, and let ρA the associated reduced state.
Assuming the obtained ordered graph Go

A|B is a series-parallel one. Then the
averaged Rényi and von Neumann entropy as D → ∞ are given by:

F (Go
A|B) log D − ESn(ρA) −−−−→

D→∞

1
n − 1 log

(∫
tn dµGo

A|B

)
,

F (Go
A|B) log D − ES(ρA) −−−−→

D→∞

∫
t log t dµGo

A|B
.

where F (Go
A|B) := maxflow(Go

A|B) .



Conclusion



Conclusion

From a general random tensor network |ψG⟩. Fix A ⊆ E∂ and
ρA = TrB |ψG⟩⟨ψG | the associated quantum state.

The moments are given by:

ETr(ρn
A) ∼

∑
α=(αx )∈S|V |

n

D−H(n)
G (α).

The moment m(D)
n,A converges to a graph dependent measure µGo

A|B
if the

obtained ordered graph Go
A|B is series-parallel:

m(D)
n,A := 1

DF (Go
A|B)E

[
Tr

((
DF (Go

A|B) ρA

)n) ]
−−−−→
D→∞

mn,Go
A|B
.

The correction terms of the Rényi and Von Neumann entanglement entropy
(as D → ∞) are graph dependent (if Go

A|B is series-parallel) given by:

ESn(ρA) ∼ F (Go
A|B) log D − 1

n − 1 log
(∫

tn dµGo
A|B

)
,

ES(ρA) ∼ F (Go
A|B) log D −

∫
t log t dµGo

A|B
.
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