Measurement-induced phase transitions in gaussian fermions and matrix product states

Hugo Lóio

Outline of the presentation

- 1. Introduction to hybrid quantum circuits
- 2. Introduction and motivation to measurement-induced phase transitions (MIPTs)
- 3. The free fermionic case
 - a. Introduction
 - b. Parity conserving model
 - c. Charge conserving model
- 4. Interacting models with matrix product states (MPS)
 - a. Introduction to MPS
 - b. The time-dependent variational principle
 - c. MIPT as a transition in classical simulatibility
- 5. Future perspectives and conclusion

What distinguishes **quantum** from **classical** information?

Quantum entanglement

System cannot be described by the state of its components in isolation

How to quantify?

 $\rho_A = \operatorname{Tr}_B(\rho)$

Rényi entropy $S_A^n = \frac{1}{1-n} \log\left[\text{Tr}\left(\rho_A^n\right)\right]$

Von Neumann entanglement entropy

$$S_A^1 = S_A = -\mathrm{Tr}\left(\rho_A \log \rho_A\right)$$

Is entanglement extensive?

$$S_A \propto V_A \quad \log V_A \quad V_{\partial A}$$

Volume Lo law

Log (critical) law

Area law

Entanglement growth in quantum circuits

Why quantum circuits?

- Fundamental in quantum computing
- Trotterization of local Hamiltonian evolution

$$\hat{H} = \sum_{i} \hat{h}_{i,i+1}$$

First order Suzuki–Trotter expansion

$$\hat{U} = e^{-i\delta t\hat{H}} = e^{-i\delta t\hat{H}_{odd}} e^{-i\delta t\hat{H}_{even}} + \mathcal{O}(\delta t^2)$$

Ballistic growth of entanglement until saturation at volume-law

Evolution with random monitoring

With probability

$$p=\gamma \delta t$$
Measurement rate

Projective (strong)

Measure operator $\hat{O} = \sum_{k} o_k \hat{P}_k$ with the Born rule

 $|\psi
angle o rac{\hat{P}_k|\psi
angle}{\sqrt{p_k}}$ with probability $p_k = \langle \psi|\hat{P}_k|\psi
angle$ measurements

In the continuous time limit $\delta t \rightarrow 0$

Stochastic Schödinger equation (SSH)

$$d \ket{\psi_t} = -iHdt \ket{\psi_t} + \sum_i \left[\sqrt{\gamma} (\hat{O}_i - \langle \hat{O}_i \rangle_t) dW_t^i - \frac{\gamma}{2} (\hat{O}_i - \langle \hat{O}_i \rangle)^2 dt \right] \ket{\psi_t}$$

Continuous (weak) measurements

Average entanglement over quantum trajectories

Measurement-induced entanglement phase transition

Trajectory-averaged **nonlinear** functions of the state

Measurement-induced phase transitions (MIPTs)

$$S(A) = -\mathrm{Tr}(\rho_A \log \rho_A)$$

Entanglement growth

Saturated entanglement laws

Measurement-Induced Phase Transitions in the Dynamics of Entanglement, Brian Skinner, Jonathan Ruhman, and Adam Nahum, Phys. Rev. X 9, 031009 (2019)
Measurement-driven entanglement transition in hybrid quantum circuits, Yaodong Li, Xiao Chen, and Matthew P. A. Fisher, Phys. Rev. B 100, 134306 (2019)

Measurement-induced purification phase transition

Dynamical Purification Phase Transition Induced by Quantum Measurements, Michael J. Gullans and David A. Huse, Phys. Rev. X 10, 041020 (2020)

Probe residual Ancilla entropy 7

Why are MIPTs interesting?

- Monitoring in quantum trajectories can describe the evolution of open quantum systems by unravelling the Linbladian
- Connection to **quantum error correction** and quantum channel capacity
- A replica trick approach to random hybrid circuits can map the MIPT to a ground state problem in an **effective spin model** (universality of dynamical phase transitions)
- The MIPT can generally be viewed as a **classical simulatability** transition

The experimental challenge

Finding identical quantum trajectories for tomography is exponentially unlikely in circuit depth

Post-selection problem

Matrix Product States (MPS)

Measurement-induced quantum phases realized in a trapped-ion quantum computer, Crystal Noel et al. Nature Physics volume 18, pages 760–764 (2022) Experimental Realization of a Measurement-Induced Entanglement Phase Transition on a Superconducting Quantum Processor, Jin Ming Koh et al. arXiv:2203.04338 (2022)

Small number of qubits

Free fermionic models

Free fermionic models

No interactions means that the states remain Gaussian on each trajectory and everything can be computed from the correlation matrix (Wick's theorem)

$$C_{a,b} = \operatorname{tr}(\rho \hat{c}_a^{\dagger} \hat{c}_b)$$

Entanglement Transition in a Monitored Free-Fermion Chain: From Extended Criticality to Area Law, O. Alberton, M. Buchhold, and S. Diehl,

Phys. Rev. Lett. 126, 170602 (2021)

Polynomial scaling with LClassically simulatable

Symmetry preserving free fermionic models

\mathbb{Z}_2 symmetry (parity conserving)

Trotterized transverse field Ising model

$$\hat{U}_{a,b}(\alpha) = \exp(-\alpha \hat{\gamma}_a \hat{\gamma}_b)$$

Majorana fermionsDirac fermions $\{\hat{\gamma}_a, \hat{\gamma}_b\} = 2\delta_{ab}$ $\{\hat{c}_a, \hat{c}_b^{\dagger}\} = \delta_{ab}$

 $\hat{\gamma}_{2a} = -i \left(\hat{c}_a^{\dagger} - \hat{c}_a \right) , \ \hat{\gamma}_{2a-1} = \hat{c}_a + \hat{c}_a^{\dagger}$

Measure the **density** operator

 $\hat{n}_a = \hat{c}_a^\dagger \hat{c}_a$

Initial state

 $|\psi_0\rangle = \hat{\mathcal{U}}_S \hat{U}_{S\cup A} |\psi_{S,0}\rangle \otimes |\psi_{A,0}\rangle$

U(1) symmetry (charge conserving)

Random U(1) unitary gates $\hat{U}_{a,b} = e^{-2i\beta(\hat{c}_a^{\dagger}\hat{c}_b + \text{h.c.})}_{\beta \sim U[0,\pi]}$

11

Measurement-induced purification transitions

 \mathbb{Z}_2 symmetry (parity conserving) $p < p_c$ \longrightarrow $\tau_P = \mathcal{O}(L \ln L)$ $p > p_c \longrightarrow \tau_P = \mathcal{O}(\ln L)$ p = 0.4 p = 0.8p = 0.5 - p = 0.940 p = 0.7 τ_P/L 20 0 10^{1} 10^{2}

Nonlinear Sigma Models for Monitored Dynamics of Free Fermions, Michele Fava, Lorenzo Piroli, Tobias Swann, Denis Bernard, and Adam Nahum, Phys. Rev. X 13, 041045 (2023) Purity revealed by $\langle S_2[\rho_S(t)]
angle$

$$S_2[\rho] = -\log[\mathrm{Tr}(\rho^2)]$$

Purification timescale $t_P = \min_t \{t : S_2(t) \simeq 0\}$ $\tau_P = \mathrm{median}(t_P)$

> Effective non-linear sigma models (NLSM)

U(1) symmetry (charge conserving) $p < p_c \implies \tau_P = \mathcal{O}(L^{\alpha(p)})$

$$p > p_c \longrightarrow \tau_P = \mathcal{O}(\ln L)$$

Theory of Free Fermions under Random Projective Measurements, Igor Poboiko, Paul Pöpperl, Igor V. Gornyi, and Alexander D. Mirlin, Phys. Rev. X 13, 041046 (2023)

Area law for exponentially

large systems

Coming soon: NLSM derivation in clustered Brownian SYK models

The interacting case

Can we **compress** the MPS?

Fix maximal bond dimension $\,\chi_i\,=\,\chi\,$

(truncate smaller Schmidt values after SVD)

$$\cdots - \underbrace{}_{\chi} \underbrace{}_{\chi}$$

Entanglement **upper bound** at fixed bond dimension χ

$$S_A \le \log \chi$$

There is always a **finite x** such that

MIPT as a **simulatibily** transition

 $\||\psi_{\rm Area}\rangle - |\psi_{\rm MPS}\rangle \|^2 < \varepsilon \quad \forall \quad \varepsilon > 0$

Efficient numerical simulations using matrix-product states, Frank Pollmann (2016)

The Time-Dependent Variational Principle (TDVP)

Time evolution with projection to MPS manifold

$$i\partial_t |\Psi(M)\rangle = P_{\mathcal{T}_M}\hat{H}|\Psi(M)\rangle$$

Tangent space of fixed χ

Effective nonlinear **symplectic** evolution (unitary within the manifold)

Volume law

Have the same conservation laws of the exact dynamics

Error rate
$$E(\chi) = \|\hat{H} |\psi\rangle - P_{\mathcal{T}_{M_{\chi}}} \hat{H} |\psi\rangle \|^2$$

$$E(\chi) \sim \frac{1}{\log(\chi)}$$
 Area law \longrightarrow $E(\chi) \sim e^{-\chi}$

Unifying time evolution and optimization with matrix product states, Jutho Haegeman, Christian Lubich, Ivan Oseledets, Bart Vandereycken, Frank Verstraete, arXiv:1408.5056 (2015)

U(1) symmetric interacting model

Example: XXX spin chain
$$\hat{H}_{XXX} = \sum_{i=1}^{L} \left(\hat{S}_{i}^{x} \hat{S}_{i+1}^{x} + \hat{S}_{i}^{y} \hat{S}_{i+1}^{y} + \hat{S}_{i}^{z} \hat{S}_{i+1}^{z} \right)$$
Measure local magnetization \hat{S}_{i}^{z} with a measurement rate γ .
Continuous measurements - stochastic Schödinger equation
$$d |\psi_{t}\rangle = -iHdt |\psi_{t}\rangle + \sum_{i=1}^{L} \left[\sqrt{\gamma} (\hat{S}_{i}^{z} - \langle \hat{S}_{i}^{z} \rangle_{t}) dW_{t}^{i} - \frac{\gamma}{2} (\hat{S}_{i}^{z} - \langle \hat{S}_{i}^{z} \rangle_{t})^{2} dt \right] |\psi_{t}$$

$$|\psi_{t+\delta t}\rangle \approx Ce^{\sum_{j=1}^{L} \left[\delta W_{t}^{j} + 2 \langle \hat{S}_{j}^{z} \rangle_{t} \gamma \delta t \right] \hat{S}_{j}^{z}} e^{-\mathbf{i}\hat{H}\delta t} |\psi_{t}\rangle \qquad \delta W_{t}^{j} \sim \mathcal{N}(0, \gamma \delta t)$$

$$\downarrow$$
Single site operators, TDVP algorithm

17

Probing the entanglement transition with the TDVP error

Comparison with exact diagonalization

Trotter decomposition of unitary evolution

Future directions

Can MPS help us solve the **post-selection** problem?

Advantage: Do not have to reconstruct the density matrix (exponentially large)

Describing these **ensembles** of MPSs Haar We expect ergodic unitary dynamics Random to produce random MPSs unitary **Transfer matrix** Random quantum channel By construction, We can look at Τ ØA the highest the **gap** eigenvalue is one Generating random quantum channels, Ryszard Kukulski, Ion Nechita, Łukasz Pawela, Zbigniew Puchała, Karol Życzkowski, J. Math. Phys. 62, 062201 (2021) $N = 60 (\gamma = 0)$ dt=0.01 $-\chi = 10$ TDVP 0.8 0.30 $\chi = 14$ - mps $\chi = 8$ v = 16interacting $\chi = 18$ $- \chi = 10$ 0.25 TDVP 0.6 $\chi = 20$ $\gamma = 14$ spin-chain $\chi = 16$ db 0.20 Gap interacting $\chi = 24$ $-\chi = 18$ + 0.4 - x = 20spin-chain $-\chi = 22$ continuous 0.15 $-\chi = 24$ $\chi = 26$ 0.2 monitoring 0.10 22

Conclusions

- Purification transition from **superlinear to sublinear** purification timescales in the free fermionic parity conserving model
- Purification transition always with **sublinear** purification in the charge conserving free fermionic model, subject to finite-size effects
- Successfully probed MIPTs from the error rate of the TDVP method in interacting charge conserving systems
- Checked MPS results with exact diagonalization simulations

Future works

- Solve the post-selection problem with a quantum-classical error rate?
- Can we describe the ensemble of MPSs for different rates of measurements?

Purification timescales in monitored fermions, Hugo Lóio, Andrea De Luca, Jacopo De Nardis, and Xhek Turkeshi, Phys. Rev. B 108, L020306 (2023)
Measurement-induced phase transitions by matrix product states scaling, Guillaume Cecile, Hugo Lóio, Jacopo De Nardis, arXiv:2402.13160 (2024)

MIPT in the Majorana circuit

Purity revealed by $\langle S_2[\rho_S(t)] \rangle$ $\tau_P = \text{median}(t_P) \quad t_P = \min_t \{t : S_2(t) \simeq 0\}$

$$p < p_c \qquad \longrightarrow \qquad \tau_P = \mathcal{O}(L \ln L)$$
$$p > p_c \qquad \longrightarrow \qquad \tau_P = \mathcal{O}(\ln L)$$

$$t~=~L~~
ho_{0,S}=1\!\!1/2^L~$$
 (no Ancilla)

 $|\psi_0\rangle = \hat{\mathcal{U}}_S \hat{\mathcal{U}}_{S \cup A} |\psi_{S,0}\rangle \otimes |\psi_{A,0}\rangle$

Phase

26

MIPT in the **Dirac** circuit

Charge-sharpening transition in the XXX chain

Start with a superposition of all charge sectors $|\Psi(0)\rangle = \bigotimes_{i=1}^{L} (|\uparrow\rangle + |\downarrow\rangle)$

Total charge variance $W^2(t) = \langle Q^2(t) \rangle - \langle Q(t) \rangle^2$

Superlinear to sublinear charge-sharpening timescale transition