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Quantum spin systems
• Finite set of spins Λ endowed with distance

• Associate to each spin x∈Λ the local Hilbert space

• Hamiltonian with finite-range interactions

• Gibbs state

• If correlations decay sufficiently fast, ω satisfies TCI
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• Holds at high enough temperature for any finite-range 

commuting Hamiltonian [see also Onorati, Rouzé, 

França, Watson, arXiv:2301.12946]

https://arxiv.org/abs/2301.12946


Equivalence of ensembles
• Canonical ensemble: Gibbs states

• Microcanonical ensemble: uniform convex combination of 

all states in energy shell

• Assume that Gibbs state satisfies TCI
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• Then, any ρ with same average energy as ω and 

approximately same entropy as ω is close to ω

• Ok if fraction of states in shell is



Quantum spin systems on ℤD

• Associate to each    local Hilbert space

• Associate to each  the Hilbert space
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• Algebra of operators acting on Λ:

• Local algebra

• Quantum state: Positive unital linear functional on

• We consider translation-invariant states

• Marginal states



Interactions

• Interaction: collection of observables

• Hamiltonian of region Λ:
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• We consider translation-invariant interactions with finite 

local norm

• Specific energy of TI state



Gibbs states
• Specific entropy of TI state
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• Equilibrium states of TI interaction: Maximizers of

• Always exist but in general are not unique

• Satisfy KMS condition

• Local Gibbs states (NOT equal to marginals of equilibrium 

states)

• ρ is equilibrium state iff



The specific quantum W1 distance

• Specific W1 distance for TI quantum states

7

• Lipschitz constant for TI quantum interactions

• Duality

• Continuity of the specific entropy



w1-Gibbs states
• TI state ρ is w1-Gibbs state of TI interaction h if
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• If it exists, w1-Gibbs state is unique and is equilibrium 

state!

• TI interaction h satisfies TCI with constant c if for any TI 

state ρ

• In this case, h has unique equilibrium state which is also 

w1-Gibbs state 

• TCI satisfied above critical temperature by any finite-

range commuting interaction



Shallow quantum circuits

• Expand W1 distance by at most twice the size of the largest 

light-cone of a qudit
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Quadratic concentration for product states

• ω product state
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• ρ output of quantum circuit with blow-up B

• See [Anshu, Metger, arXiv:2209.02715] for 

Gaussian concentration of observables diagonal 

in computational basis

https://arxiv.org/abs/2209.02715


Combinatorial optimization

• Goal: find bit string that maximizes cost function C

•  Local cost: sum of functions each depending on O(1) bits

• Efficient classical algorithms usually achieve
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• Example: maximum cut problem, i.e., find the bipartition 

of a graph that maximizes the # of edges connecting the 

two parts

• Associate one bit to each vertex, set to 1 bits in second 

half of bipartition

• NP complete!



Variational quantum algorithms
• Associate one qubit to each bit, quantum Hamiltonian to 

cost function
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• Train parametric quantum circuit to generate high-energy 

states

• Example: Quantum Approximate Optimization Algorithm 

(QAOA)

• Alternate time evolution with H and mixing Hamiltonian



Limitations of QAOA for MaxCut

• Toy model: D-regular bipartite graph (maxcut = n D / 2)

• Technical assumption:
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• Satisfied by Ramanujan expander graphs with D≥3 and 
for large n by random D-regular graphs with high 
probability

• Observation [Bravyi et al., PRL 125, 260505 (2020)]: 
QAOA circuit commutes with X⊗n

• Probability distribution of output measurement symmetric 
wrt flipping all bits and cannot be concentrated on single 
string

https://doi.org/10.1103/PhysRevLett.125.260505


Limitations of QAOA for MaxCut
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• Result: if

then the quadratic concentration inequality implies

• Improves Bravyi et al.

• Holds for any circuit and initial state commuting with X⊗n



Further applications
• Quantum Wasserstein Generative Adversarial Networks

[Kiani, GdP, Marvian, Liu, Lloyd, Quantum Sci Technol 7, 045002 (2022)]

• Design of quantum error correcting codes

[Zoratti, GdP, Kiani, Nguyen, Marvian, Lloyd, Giovannetti,

Phys. Rev. A 108, 022611 (2023)]

• Efficient learning of quantum states

[Rouzé, França, arXiv:2107.03333]

[Onorati, Rouzé, França, Watson, arXiv:2301.12946]

[GdP, Klein, Pastorello, arXiv:2309.08426]

• Quantum rate-distortion theory
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