
QuantumMean-FieldFiltering andControl
Sofiane Chalal1, Nina Hadis Amini1, Gaoyue Guo2

1 Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec, Université Paris-Saclay

2 Mathematics Computer Science (MICS), CentraleSupélec, Université Paris-Saclay

June 12, 2024

Motivation
The 21 century is seeing the emergence of the
first truly quantum technologies; that is, tech-
nologies that rely on the counter-intuitive prop-
erties of individual quantum systems and can
often outperform any conventional technology.
Examples include quantum computing, which
promises to be better than conventional com-
puting for certain problems. To realize these
promises, it’s necessary to understand the mea-
surement and control of quantum systems.

Formalism
In the theory of open quantum system undergoing
continuous measurements, the state of the system
of N -quantum particles is described by what we call
a density matrix where the dynamics evolution is
given by stochastic differential equation known as
Belavkin Equation :
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• S := {MdN (C), ρ = ρ† ≥ 0, tr(ρ) = 1}

The process (ρNt )t≥0 is valued on the set densities
matrices S.
Where Hk is hermitian matrix (i.e H = H†) called
hamiltonian of control and u is scalar function, and
the Lk are matrix where Lk + L†

k represent the ob-
servable quantities for the k−th particle. The ma-
trix Ajk denotes the pairwise interaction between
each particles.
To describe the dynamics of (ρNt ) We need d2N − 1
real numbers, so the complexity grows exponentially
fast and deal with such equations becomes impossi-
ble.
However when N grows by symmetries of the pair-
wise interaction we can expect some averaging and
decorrelation between particles. Typical behaviour
of particle emmerge, this what we called mean-field
limit in this setting we deal with Belavkin stochastic
differential equation of McKean-Vlasov type :
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Where, mt = E[γt]. To justify the approximation,
we have to show that ρN asymptotically becomes
close to γ⊗N . To measure a deviation from ρN to
γ⊗N , we consider the following quantity
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Theorem 1 (Propagation of chaos). Let u be
bounded and Lipschitz, then MF-Belavkin equation
is well posed and valued in Sd.Moreover we have
propagation of chaos i.e ∃c s.t

E
[
αN (t)

]
≤ ect

(
αN (0) +

1√
N

)
.

Synoptic of Quantum Feedback Control

Figure 1: Diagram Quantum Feedback Control.

A typical feedback control scenario in quantum op-
tics. A probe laser scatters off a cloud of atoms in
an optical cavity, and is ultimately detected. The de-
tected signal is processed by a controller which feeds
back to the system through a time varying magnetic
field.

Illustration through an example

Quantum states reduction Stabilization with feedback

We consider the case of N -qubit system, interacting through a Hamiltonian of MF type.
a(1, 1; 2, 2) = a(2, 2; 1, 1).

For each particle we an observation channel Lj = σz
j and a controlled Hamiltonian Hj = σx

j . The
evolution of the N -particles systems is given by the following equation:
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Note that the simulation of ρN requires 4N − 1 real stochastic differential equations and the
complexity is O(4N ).

The MF Belavkin equation parametrize by reals numbers is represented as follows:

dxt =
(
− yt − xt + E[zt]yt

)
dt− xtztdWt

dyt =
(
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)
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dzt = −u(γt)xtdt+ (1− z2t )dWt

To simulate the MF equation, we need to solve only three real stochastic differential equations.
Nevertheless, we need to approximate E[xt],E[yt],E[zt] using an N -particle system, which yields a

complexity O(N).

We start by studying the asymptotic behavior of our system when the feedback control is turned
off, i.e., (u ≡ 0). We observe a quantum state reduction property, i.e (γt)t≥0 converges to one of the

eigenstates of L, i.e., {ρe, ρg} with

ρg :=

(
1 0
0 0

)
, ρe :=

(
0 0
0 1

)
,

that are the equilibrium points of the MF equation. Further, to ensure that the system attains a
prescribed target, for example ρe, we adapt a feedback law control u given by

u(γ) := −8i tr
(
[σx, γ]ρe

)
+ 5

(
1− tr(γρe)

)
. the right illustration shows that the stabilization is
achieved.


