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Classical optimal transport

Classical optimal transport context

Classically, optimal transport costs describe the minimum cost needed to transport
mass from one place to another.
Given:

Measurable space X
Cost function c : X × X → R≥0

Probability measures µ, ν on X
we define a coupling as a measure π on X × X whose marginals are µ and ν
respectively, so for projections Px and Py we have (Px)⋆π = µ, (Py )⋆π = ν. Then
for points x and y , π(dx , dy) is interpreted as the amount of mass transported
from point x to point y .

The transport cost of coupling π is then∫
X×X

c(x , y)π(dx , dy). (1)

This gives the optimal transport cost,

inf
π

∫
X×X

c(x , y)π(dx , dy) (2)

where the infimum is over couplings π of µ and ν.
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Classical optimal transport

Classical optimal transport context

When X is equipped with metric d , we can take c(x , y) = d(x , y)p and recover
the classical Wasserstein distances:

Definition (Classical Wasserstein distance)

The Wasserstein distance Wp of order p between µ, ν on metric space (X , d) is
given by

Wp(µ, ν) =

(
inf
π

∫
X×X

d(x , y)pπ(dx , dy)

)1/p

. (3)
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Motivation and definitions

Motivation

Many generalisations to the quantum setting have been proposed, all of which
either do not satisfy basic properties, or only exist for specific circumstances.

We
note the property of the classical distances: that for all orders p, the Wasserstein
distance between point masses agrees with the underlying distance:

∀p,Wp(δx , δy ) = d(x , y). (4)

Generalising this, given a Hilbert space H with underlying metric d on the space
of pure states PH, we would expect any general definition of a quantum
Wasserstein distance W d

p to satisfy

W d
p (|ψ⟩⟨ψ|, |φ⟩⟨φ|) = d(|ψ⟩ , |φ⟩) (5)

for pure states |ψ⟩, |φ⟩.
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Motivation and definitions

Definitions

Definition (Quantum transport plan)

A quantum transport plan between states ρ, σ is a finite set of triples
Q = {(qj , |ψj⟩ , |φj⟩)}j such that∑

j

qj |ψj⟩⟨ψj | = ρ,
∑
j

qj |φj⟩⟨φj | = σ. (6)

The plan Q corresponds to separable coupling τ =
∑

j qj |ψj⟩⟨ψj | ⊗ |φj⟩⟨φj |.

Definition (Quantum transport cost)

For a quantum transport plan Q = {(qj , |ψj⟩ , |φj⟩)}j between ρ and σ, the
transport cost of Q is

T d
p (Q) =

∑
j

qjd(|ψj⟩ , |φj⟩)p. (7)
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Motivation and definitions

Definitions

Optimising over Q allows us to define the quantum Wasserstein distance of order
p with respect to d .

Definition (Quantum Wasserstein distance)

The pth-order quantum Wasserstein distance between ρ and σ is defined as

W d
p (ρ, σ) =

(
inf
Q

T d
p (Q)

)1/p

=

inf
Q

∑
j

qjd(|ψj⟩ , |φj⟩)p
1/p

(8)

where the infimum is over all quantum transport plans Q between ρ and σ.
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General properties

General properties

Subject to gentle continuity conditions on d , the W d
p distances satisfy the

following properties:

Properties

1 Faithfulness: W d
p (ρ, σ) ≥ 0 with equality iff ρ = σ.

2 Agreement with d : for pure states |ψ⟩ , |φ⟩, we have
W d

p (|ψ⟩⟨ψ|, |φ⟩⟨φ|) = d(|ψ⟩ , |φ⟩).
3 Data processing for mixed unitary channels: for unitaries Ui which are

symmetries of d , the channel T (·) =
∑

i piUi · U†
i satisfies data processing.

4 Hierarchy in p: For p1 < p2, we have W d
p1 ≤ W d

p2 .

5 Continuity: W d
p is uniformly continuous.

6 Infimum achieved at polynomial sizes: For Hilbert space H of dimension
D, the infimum in the definition of W d

p is achieved for a transport plan Q

with at most 2D2 elements.
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General properties

Dual setting

We can dualise this quantity as follows:

Ld(O) = sup
ρ ̸=σ

Tr[O(ρ− σ)]

W d
1 (ρ, σ)

(9)

which is a norm.

In an analogy with the Kantorovich-Rubenstein theorem, this
turns out to be the Lipschitz constant of the operator O on PH:

Ld(O) = sup
ψ ̸=φ

Tr[O(|ψ⟩⟨ψ| − |φ⟩⟨φ|)]
d(|ψ⟩ , |φ⟩)

. (10)

We can then define closely related norm

Definition (dual norm)

∥ρ− σ∥DW d
1
= sup

Ld (O)≤1

Tr[O(ρ− σ)] (11)

which is indeed a norm. We have W d
1 (ρ, σ) ≥ ∥ρ− σ∥DW d

1
and for d induced by a

norm ∥·∥d ,
W d

1 (ρ, σ) ≥ ∥ρ− σ∥DW d
1
≥ ∥ρ− σ∥d . (12)
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Specific examples

Specific examples

d from the trace distance: d(|ψ⟩ , |φ⟩) = 1
2 ∥|ψ⟩⟨ψ| − |φ⟩⟨φ|∥1. Then

1
2 ∥ρ− σ∥1 = ∥ρ− σ∥DW 1

1
.

d from the W H
1 norm1: d(|ψ⟩ , |φ⟩) = 1

2 ∥|ψ⟩⟨ψ| − |φ⟩⟨φ|∥W H
1
. Notated as

W H
p . Then 2 ∥ρ− σ∥W H

1
≥ ∥ρ− σ∥DW H

1
≥ ∥ρ− σ∥W H

1
.

d from the Nielsen complexity geometry2: notated as W C
p .

1G. de Palma et al., The Quantum Wasserstein Distance of Order 1, IEEE Transactions on
Information Theory 67(10), Oct 2021

2M.A. Nielsen, A geometric approach to quantum circuit lower bounds, Quantum Information
and Computation 6(3), May 2006
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Applications

Values on random states

We use model ρ = TrA[|Φ⟩⟨Φ|] where |Φ⟩ ∼ µHaar on H⊗A. Let dimH = dn,
logd(dimA) = m and c = m/n.

Random states with large auxiliary systems

P
[
W d

1 (ρ, σ) ≥ βd−(c−3)n/2diamd(PH)
]
≤ 1

β2
. (13)

For W H
p=1, this is significant when c > 3, and W C

1 when c > 9.

Random states with small auxiliary systems

When c < 1, Eρ,σ
[
W H

p=1(ρ, σ)
]
≥ λcn (14)

where λc satisfies (1− c) log d = h2(λ) + λ log(d2 − 1) for h2 the binary entropy.
When c = 0,

P|φ⟩

[
dC (|ψ⟩ , |φ⟩) ≤ ϵ2/3n−1κ

(
2(1−δ)n

poly(n, log ϵ−1)

)1/3
]
≤ e−Ω(2n log((2ϵ)−1)). (15)
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Applications

Values on random states

We use model ρ = TrA[|Φ⟩⟨Φ|] where |Φ⟩ ∼ µHaar on H⊗A. Let dimH = dn,
logd(dimA) = m and c = m/n.

Random states with large auxiliary systems

P
[
W d

1 (ρ, σ) ≥ βd−(c−3)n/2diamd(PH)
]
≤ 1

β2
. (13)

For W H
p=1, this is significant when c > 3, and W C

1 when c > 9.

Random states with small auxiliary systems

When c < 1, Eρ,σ
[
W H

p=1(ρ, σ)
]
≥ λcn (14)
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Applications

Moments of classical-quantum (c-q) sources

W d
p (ρ, σ) can be expressed as a sharp lower bound for the pth moment between

the output of c-q sources.

Let R and S be controlled by X , P(X = i) = qi .

On input i let R output |ψi ⟩ and S output |φi ⟩.
We define the expected outputs ρ, σ of R and S as ρ =

∑
qi |ψi ⟩⟨ψi |,

σ =
∑

qi |φi ⟩⟨φi | respectively.

Moments of c-q sources

E[d(R,S)p] ≥ W d
p (ρ, σ)

p. (16)

This bound is sharp in the sense that there exist sources R ′, S ′ with expected
outputs ρ, σ respectively such that E[d(R ′,S ′)p] = W d

p (ρ, σ)
p.

For the W C
p distance in particular, this means that the pth moment of the

complexity of converting one c-q source into another post-output is sharply lower
bounded by their W C

p distance.
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Applications

Hypercontractivity

Hypercontractivity3 can be used in the classical setting to quantify the noise of an
operation.

Indeed, for α ∈ [0, 1] let the standard Boolean noise operator Tα on
functions f : {−1, 1}n → {−1, 1} is defined as follows

(Tαf )(x) = Ey [f (y)] (17)

where bit yi is xi with probability 1/2 + α/2 and −xi otherwise.
Then we have

Classical hypercontractivity theorem

Given α ≤
√

p−1
q−1 , we have

∥Tαf ∥q ≤ ∥f ∥p . (18)

In this way, for a general operator U the ratio
∥f ∥p

∥Uαf ∥q
can quantify the noise in f .

3A. Bonami, Étude des coefficients de Fourier des fonctions de Lp(G), 1970.
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Applications

Hypercontractivity

In the hierarchy p1 < p2, we know that
Wp1

(ρ,σ)

Wp2
(ρ,σ) < 1. We have the standard noise

channels N = Rx,δ,Sδ

Rx,δ(ρ) = (1− δ)ρ+ δ|x⟩⟨x | Sδ(ρ) = (1− δ)ρ+ δI/D. (19)

Hypercontractivity in W d
p

Let 1 ≤ p1 < p2, and suppose W d
p1(ρ, σ) = M. Then for

1− δ ≤ (M/diamd(PH))p2−p1 , the channels N = Rx,δ and N = Sx have

Wp1(ρ, σ)

Wp2(N (ρ),N (σ))
> 1. (20)

For general N , this suggests that the ratio above can be interpreted as
quantifying the amount of noise in the channel.
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Further avenues

Conclusion

We propose a novel definition of the quantum Wasserstein distance for any
underlying metric d on PH and any order p, which (so far as we are aware) is
the first to exhibit such flexibility.

We show it has many desirable properties of a good quantum Wasserstein
distance.

We exhibit some applications to c-q sources and the noise of channels, which
are only possible thanks to the full flexibility of the definition in both the
order p and the distance d .

Further avenues: triangle inequality, Markov chains, other underlying metrics
d , ...
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Further avenues

Further avenues

What does this look like for other underlying metrics d on PH?

How can we approach the triangle inequality?

How can we recover other applications of classical Wasserstein distances in
the quantum setting (Markov chains, concentration inequalities etc.)?

How can we lower bound this distance Wp?

Thanks for your attention :)

Emily Beatty (ENS de Lyon / INRIA) Order p Wasserstein distances Porquerolles, 10 June 2024 16 / 16



Further avenues

Further avenues

What does this look like for other underlying metrics d on PH?

How can we approach the triangle inequality?

How can we recover other applications of classical Wasserstein distances in
the quantum setting (Markov chains, concentration inequalities etc.)?

How can we lower bound this distance Wp?

Thanks for your attention :)

Emily Beatty (ENS de Lyon / INRIA) Order p Wasserstein distances Porquerolles, 10 June 2024 16 / 16



Further avenues

Further avenues

What does this look like for other underlying metrics d on PH?

How can we approach the triangle inequality?

How can we recover other applications of classical Wasserstein distances in
the quantum setting (Markov chains, concentration inequalities etc.)?

How can we lower bound this distance Wp?

Thanks for your attention :)

Emily Beatty (ENS de Lyon / INRIA) Order p Wasserstein distances Porquerolles, 10 June 2024 16 / 16



Further avenues

Further avenues

What does this look like for other underlying metrics d on PH?

How can we approach the triangle inequality?

How can we recover other applications of classical Wasserstein distances in
the quantum setting (Markov chains, concentration inequalities etc.)?

How can we lower bound this distance Wp?

Thanks for your attention :)

Emily Beatty (ENS de Lyon / INRIA) Order p Wasserstein distances Porquerolles, 10 June 2024 16 / 16



Further avenues

Further avenues

What does this look like for other underlying metrics d on PH?

How can we approach the triangle inequality?

How can we recover other applications of classical Wasserstein distances in
the quantum setting (Markov chains, concentration inequalities etc.)?

How can we lower bound this distance Wp?

Thanks for your attention :)

Emily Beatty (ENS de Lyon / INRIA) Order p Wasserstein distances Porquerolles, 10 June 2024 16 / 16


	Classical optimal transport
	Motivation and definitions
	General properties
	Specific examples
	Applications
	Further avenues

